Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(10): eadh0477, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457496

RESUMO

In recent years, the application of metagenomics techniques has advanced our understanding of plankton communities and their global distribution. Despite this progress, the relationship between the abundance distribution of diatom species and varying marine environmental conditions remains poorly understood. This study, leveraging data from the Tara Oceans expedition, tests the hypothesis that diatoms in sampled stations display a consistent species abundance distribution structure, as though they were sampled from a single ocean-wide metacommunity. Using a neutral sampling theory, we thus develop a framework to estimate the structure and diversity of diatom communities at each sampling station given the shape of the species abundance distribution of the metacommunity and the information of a reference station. Our analysis reveals a substantial temperature gradient in the discrepancies between predicted and observed biodiversity across the sampled stations. These findings challenge the hypothesis of a single neutral metacommunity, indicating that environmental differences substantially influence both the composition and structure of diatom communities.


Assuntos
Diatomáceas , Plâncton , Biodiversidade , Oceanos e Mares , Ecossistema
2.
Nat Commun ; 14(1): 6092, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773229

RESUMO

Marine plankton play a crucial role in carbon storage, global climate, and ecosystem function. Planktonic ecosystems are embedded in patches of water that are continuously moving, stretching, and diluting. These processes drive inhomegeneities on a range of scales, with implications for the integrated ecosystem properties, but are hard to characterize. We present a theoretical framework that accounts for all these aspects; tracking the water patch hosting a drifting ecosystem along with its physical, environmental, and biochemical features. The theory resolves patch dilution and internal physical mixing as a function of oceanic strain and diffusion. Ecological dynamics are parameterized by an idealized nutrient and phytoplankton population and we specifically capture the time evolution of the biochemical spatial variances to represent within-patch heterogeneity. We find that, depending only on the physical processes to which the water patch is subjected, the plankton biomass response to a resource perturbation can vary in size up to six times. This work indicates that we must account for these processes when interpreting and modeling marine ecosystems and provides a framework with which to do so.


Assuntos
Ecossistema , Plâncton , Plâncton/fisiologia , Fitoplâncton , Biomassa , Água
3.
Nat Commun ; 13(1): 5861, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195609

RESUMO

Gene flow governs the contemporary spatial structure and dynamic of populations as well as their long-term evolution. For species that disperse using atmospheric or oceanic flows, biophysical models allow predicting the migratory component of gene flow, which facilitates the interpretation of broad-scale spatial structure inferred from observed allele frequencies among populations. However, frequent mismatches between dispersal estimates and observed genetic diversity prevent an operational synthesis for eco-evolutionary projections. Here we use an extensive compilation of 58 population genetic studies of 47 phylogenetically divergent marine sedentary species over the Mediterranean basin to assess how genetic differentiation is predicted by Isolation-By-Distance, single-generation dispersal and multi-generation dispersal models. Unlike previous approaches, the latter unveil explicit parents-to-offspring links (filial connectivity) and implicit links among siblings from a common ancestor (coalescent connectivity). We find that almost 70 % of observed variance in genetic differentiation is explained by coalescent connectivity over multiple generations, significantly outperforming other models. Our results offer great promises to untangle the eco-evolutionary forces that shape sedentary population structure and to anticipate climate-driven redistributions, altogether improving spatial conservation planning.


Assuntos
Fluxo Gênico , Genética Populacional , Variação Genética , Oceanos e Mares
4.
Environ Microbiol ; 24(12): 6086-6099, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36053818

RESUMO

For more than a decade, high-throughput sequencing has transformed the study of marine planktonic communities and has highlighted the extent of protist diversity in these ecosystems. Nevertheless, little is known relative to their genomic diversity at the species-scale as well as their major speciation mechanisms. An increasing number of data obtained from global scale sampling campaigns is becoming publicly available, and we postulate that metagenomic data could contribute to deciphering the processes shaping protist genomic differentiation in the marine realm. As a proof of concept, we developed a findable, accessible, interoperable and reusable (FAIR) pipeline and focused on the Mediterranean Sea to study three a priori abundant protist species: Bathycoccus prasinos, Pelagomonas calceolata and Phaeocystis cordata. We compared the genomic differentiation of each species in light of geographic, environmental and oceanographic distances. We highlighted that isolation-by-environment shapes the genomic differentiation of B. prasinos, whereas P. cordata is impacted by geographic distance (i.e. isolation-by-distance). At present time, the use of metagenomics to accurately estimate the genomic differentiation of protists remains challenging since coverages are lower compared to traditional population surveys. However, our approach sheds light on ecological and evolutionary processes occurring within natural marine populations and paves the way for future protist population metagenomic studies.


Assuntos
Fitoplâncton , Estramenópilas , Mar Mediterrâneo , Fitoplâncton/genética , Ecossistema , Genômica
5.
Nat Commun ; 13(1): 2981, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624104

RESUMO

Plastic debris is a ubiquitous pollutant on the sea surface. To date, substantial research efforts focused on the detection of plastic accumulation zones. Here, a different paradigm is proposed: looking for crossroad regions through which large amounts of plastic debris flow. This approach is applied to the Mediterranean Sea, massively polluted but lacking in zones of high plastic concentration. The most extensive dataset of plastic measurements in this region to date is combined with an advanced numerical plastic-tracking model. Around 20% of Mediterranean plastic debris released every year passed through about 1% of the basin surface. The most important crossroads intercepted plastic debris from multiple sources, which had often traveled long distances. The detection of these spots could foster understanding of plastic transport and help mitigation strategies. Moreover, the general applicability and the soundness of the crossroad approach can promote its application to the study of other pollutants.


Assuntos
Poluentes Ambientais , Plásticos , Monitoramento Ambiental , Mar Mediterrâneo , Resíduos/análise
6.
Sci Total Environ ; 838(Pt 1): 155958, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35580673

RESUMO

The Mediterranean Sea is recognized as one of the most polluted areas by floating plastics. During the Tara Mediterranean expedition, an extensive sampling of plastic debris was conducted in seven ecoregions, from Gibraltar to Lebanon with the aim of providing reliable estimates of regional differences in floating plastic loads and plastic characteristics. The abundance, size, surface, circularity and mass of 75,030 pieces were analyzed and classified in a standardized multi-parameter database. Their average abundance was 2.60 × 105 items km-2 (2.25 × 103 to 8.50 × 106 km-2) resulting in an estimate of about 650 billion plastic particles floating on the surface of the Mediterranean. This corresponds to an average of 660 metric tons of plastic, at the lower end of literature estimates. High concentrations of plastic were observed in the northwestern coastal regions, north of the Tyrrhenian Sea, but also off the western and central Mediterranean basins. The Levantine basin south of Cyprus had the lowest concentrations. A Lagrangian Plastic Pollution Index (LPPI) predicting the concentration of plastic debris was validated using the spatial resolution of the data. The advanced state of plastic degradation detected in the analyses led to the conclusion that stranding/fragmentation/resuspension is the key process in the dynamics of floating plastic in Mediterranean surface waters. This is supported by the significant correlation between pollution sources and areas of high plastic concentration obtained by the LPPI.


Assuntos
Plásticos , Resíduos , Monitoramento Ambiental , Poluição Ambiental/análise , Mar Mediterrâneo , Resíduos/análise
7.
Sci Rep ; 12(1): 1552, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091555

RESUMO

Floods affected more than 2 billion people worldwide from 1998 to 2017 and their occurrence is expected to increase due to climate warming, population growth and rapid urbanization. Recent approaches for understanding the resilience of transportation networks when facing floods mostly use the framework of percolation but we show here on a realistic high-resolution flood simulation that it is inadequate. Indeed, the giant connected component is not relevant and instead, we propose to partition the road network in terms of accessibility of local towns and define new measures that characterize the impact of the flooding event. Our analysis allows to identify cities that will be pivotal during the flooding by providing to a large number of individuals critical services such as hospitalization services, food supply, etc. This approach is particularly relevant for practical risk management and will help decision makers for allocating resources in space and time.

8.
Sci Rep ; 11(1): 15805, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349142

RESUMO

Oceanic frontal zones have been shown to deeply influence the distribution of primary producers and, at the other extreme of the trophic web, top predators. However, the relationship between these structures and intermediate trophic levels is much more obscure. In this paper we address this knowledge gap by comparing acoustic measurements of mesopelagic fish concentrations to satellite-derived fine-scale Lagrangian Coherent Structures in the Indian sector of the Southern Ocean. First, we demonstrate that higher fish concentrations occur more frequently in correspondence with strong Lagrangian Coherent Structures. Secondly, we illustrate that, while increased fish densities are more likely to be observed over these structures, the presence of a fine-scale feature does not imply a concomitant fish accumulation, as other factors affect fish distribution. Thirdly, we show that, when only chlorophyll-rich waters are considered, front intensity modulates significantly more the local fish concentration. Finally, we discuss a model representing fish movement along Lagrangian features, specifically built for mid-trophic levels. Its results, obtained with realistic parameters, are qualitatively consistent with the observations and the spatio-temporal scales analysed. Overall, these findings may help to integrate intermediate trophic levels in trophic models, which can ultimately support management and conservation policies.

9.
Nat Commun ; 12(1): 4935, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400636

RESUMO

The study of connectivity patterns in networks has brought novel insights across diverse fields ranging from neurosciences to epidemic spreading or climate. In this context, betweenness centrality has demonstrated to be a very effective measure to identify nodes that act as focus of congestion, or bottlenecks, in the network. However, there is not a way to define betweenness outside the network framework. By analytically linking dynamical systems and network theory, we provide a trajectory-based formulation of betweenness, called Lagrangian betweenness, as a function of Lyapunov exponents. This extends the concept of betweenness beyond the context of network theory relating hyperbolic points and heteroclinic connections in any dynamical system to the structural bottlenecks of the network associated with it. Using modeled and observational velocity fields, we show that such bottlenecks are present and surprisingly persistent in the oceanic circulation across different spatio-temporal scales and we illustrate the role of these areas in driving fluid transport over vast oceanic regions. Analyzing plankton abundance data from the Kuroshio region of the Pacific Ocean, we find significant spatial correlations between measures of diversity and betweenness, suggesting promise for ecological applications.

10.
Phys Rev E ; 103(4-1): 042309, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005882

RESUMO

Connectivity is a fundamental structural feature of a network that determines the outcome of any dynamics that happens on top of it. However, an analytical approach to obtain connection probabilities between nodes associated with to paths of different lengths is still missing. Here, we derive exact expressions for random-walk connectivity probabilities across any range of numbers of steps in a generic temporal, directed, and weighted network. This allows characterizing explicit connectivity realized by causal paths as well as implicit connectivity related to motifs of three nodes and two links called here pitchforks. We directly link such probabilities to the processes of tagging and sampling any quantity exchanged across the network, hence providing a natural framework to assess transport dynamics. Finally, we apply our theoretical framework to study ocean transport features in the Mediterranean Sea. We find that relevant transport structures, such as fluid barriers and corridors, can generate contrasting and counterintuitive connectivity patterns bringing novel insights into how ocean currents drive seascape connectivity.

11.
Ecol Appl ; 29(5): e01913, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31144784

RESUMO

Marine resources stewardships are progressively becoming more receptive to an effective incorporation of both ecosystem and environmental complexities into the analytical frameworks of fisheries assessment. Understanding and predicting marine fish production for spatially and demographically complex populations in changing environmental conditions is however still a difficult task. Indeed, fisheries assessment is mostly based on deterministic models that lack realistic parameterizations of the intricate biological and physical processes shaping recruitment, a cornerstone in population dynamics. We use here a large metapopulation of a harvested fish, the European hake (Merluccius merluccius), managed across transnational boundaries in the northwestern Mediterranean, to model fish recruitment dynamics in terms of physics-dependent drivers related to dispersal and survival. The connectivity among nearby subpopulations is evaluated by simulating multi-annual Lagrangian indices of larval retention, imports, and self-recruitment. Along with a proxy of the regional hydroclimate influencing early life stages survival, we then statistically determine the relative contribution of dispersal and hydroclimate for recruitment across contiguous management units. We show that inter-annual variability of recruitment is well reproduced by hydroclimatic influences and synthetic connectivity estimates. Self-recruitment (i.e., the ratio of retained locally produced larvae to the total number of incoming larvae) is the most powerful metric as it integrates the roles of retained local recruits and immigrants from surrounding subpopulations and is able to capture circulation patterns affecting recruitment at the scale of management units. We also reveal that the climatic impact on recruitment is spatially structured at regional scale due to contrasting biophysical processes not related to dispersal. Self-recruitment calculated for each management unit explains between 19% and 32.9% of the variance of recruitment variability, that is much larger than the one explained by spawning stock biomass alone, supporting an increase of consideration of connectivity processes into stocks assessment. By acknowledging the structural and ecological complexity of marine populations, this study provides the scientific basis to link spatial management and temporal assessment within large marine metapopulations. Our results suggest that fisheries management could be improved by combining information of physical oceanography (from observing systems and operational models), opening new opportunities such as the development of short-term projections and dynamic spatial management.


Assuntos
Ecossistema , Peixes , Animais , Pesqueiros , Larva , Oceanos e Mares , Dinâmica Populacional
12.
Nat Ecol Evol ; 2(8): 1243-1249, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29915345

RESUMO

Marine plankton populate 70% of Earth's surface, providing the energy that fuels ocean food webs and contributing to global biogeochemical cycles. Plankton communities are extremely diverse and geographically variable, and are overwhelmingly composed of low-abundance species. The role of this rare biosphere and its ecological underpinnings are however still unclear. Here, we analyse the extensive dataset generated by the Tara Oceans expedition for marine microbial eukaryotes (protists) and use an adaptive algorithm to explore how metabarcoding-based abundance distributions vary across plankton communities in the global ocean. We show that the decay in abundance of non-dominant operational taxonomic units, which comprise over 99% of local richness, is commonly governed by a power-law. Despite the high spatial turnover in species composition, the power-law exponent varies by less than 10% across locations and shows no biogeographical signature, but is weakly modulated by cell size. Such striking regularity suggests that the assembly of plankton communities in the dynamic and highly variable ocean environment is governed by large-scale ubiquitous processes. Understanding their origin and impact on plankton ecology will be important for evaluating the resilience of marine biodiversity in a changing ocean.


Assuntos
Algoritmos , Modelos Teóricos , Plâncton/genética , Código de Barras de DNA Taxonômico , Oceanos e Mares
13.
Chaos ; 27(3): 035601, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28364738

RESUMO

During the last few years, complex network approaches have demonstrated their great potentials as versatile tools for exploring the structural as well as dynamical properties of dynamical systems from a variety of different fields. Among others, recent successful examples include (i) functional (correlation) network approaches to infer hidden statistical interrelationships between macroscopic regions of the human brain or the Earth's climate system, (ii) Lagrangian flow networks allowing to trace dynamically relevant fluid-flow structures in atmosphere, ocean or, more general, the phase space of complex systems, and (iii) time series networks unveiling fundamental organization principles of dynamical systems. In this spirit, complex network approaches have proven useful for data-driven learning of dynamical processes (like those acting within and between sub-components of the Earth's climate system) that are hidden to other analysis techniques. This Focus Issue presents a collection of contributions addressing the description of flows and associated transport processes from the network point of view and its relationship to other approaches which deal with fluid transport and mixing and/or use complex network techniques.

14.
Chaos ; 27(3): 035803, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28364759

RESUMO

We show that the clustering coefficient, a standard measure in network theory, when applied to flow networks, i.e., graph representations of fluid flows in which links between nodes represent fluid transport between spatial regions, identifies approximate locations of periodic trajectories in the flow system. This is true for steady flows and for periodic ones in which the time interval τ used to construct the network is the period of the flow or a multiple of it. In other situations, the clustering coefficient still identifies cyclic motion between regions of the fluid. Besides the fluid context, these ideas apply equally well to general dynamical systems. By varying the value of τ used to construct the network, a kind of spectroscopy can be performed so that the observation of high values of mean clustering at a value of τ reveals the presence of periodic orbits of period 3τ, which impact phase space significantly. These results are illustrated with examples of increasing complexity, namely, a steady and a periodically perturbed model two-dimensional fluid flow, the three-dimensional Lorenz system, and the turbulent surface flow obtained from a numerical model of circulation in the Mediterranean sea.

15.
Chaos ; 25(8): 087413, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26328584

RESUMO

A Lagrangian flow network is constructed for the atmospheric blocking of Eastern Europe and Western Russia in summer 2010. We compute the most probable paths followed by fluid particles, which reveal the Omega-block skeleton of the event. A hierarchy of sets of highly probable paths is introduced to describe transport pathways when the most probable path alone is not representative enough. These sets of paths have the shape of narrow coherent tubes flowing close to the most probable one. Thus, even when the most probable path is not very significant in terms of its probability, it still identifies the geometry of the transport pathways.

16.
Artigo em Inglês | MEDLINE | ID: mdl-26274236

RESUMO

We consider paths in weighted and directed temporal networks, introducing tools to compute sets of paths of high probability. We quantify the relative importance of the most probable path between two nodes with respect to the whole set of paths and to a subset of highly probable paths that incorporate most of the connection probability. These concepts are used to provide alternative definitions of betweenness centrality. We apply our formalism to a transport network describing surface flow in the Mediterranean sea. Despite the full transport dynamics is described by a very large number of paths we find that, for realistic time scales, only a very small subset of high probability paths (or even a single most probable one) is enough to characterize global connectivity properties of the network.

17.
PLoS One ; 10(5): e0125077, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25946169

RESUMO

In the context of agent based modeling and network theory, we focus on the problem of recovering behavior-related choice information from origin-destination type data, a topic also known under the name of network tomography. As a basis for predicting agents' choices we emphasize the connection between adaptive intelligent behavior, causal entropy maximization, and self-organized behavior in an open dynamic system. We cast this problem in the form of binary and weighted networks and suggest information theoretic entropy-driven methods to recover estimates of the unknown behavioral flow parameters. Our objective is to recover the unknown behavioral values across the ensemble analytically, without explicitly sampling the configuration space. In order to do so, we consider the Cressie-Read family of entropic functionals, enlarging the set of estimators commonly employed to make optimal use of the available information. More specifically, we explicitly work out two cases of particular interest: Shannon functional and the likelihood functional. We then employ them for the analysis of both univariate and bivariate data sets, comparing their accuracy in reproducing the observed trends.


Assuntos
Técnicas de Observação do Comportamento/métodos , Comportamento/classificação , Teoria da Informação , Fenômenos Biológicos , Entropia , Humanos , Funções Verossimilhança , Fenômenos Fisiológicos
18.
Chaos ; 25(3): 036404, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25833442

RESUMO

We represent transport between different regions of a fluid domain by flow networks, constructed from the discrete representation of the Perron-Frobenius or transfer operator associated to the fluid advection dynamics. The procedure is useful to analyze fluid dynamics in geophysical contexts, as illustrated by the construction of a flow network associated to the surface circulation in the Mediterranean sea. We use network-theory tools to analyze the flow network and gain insights into transport processes. In particular, we quantitatively relate dispersion and mixing characteristics, classically quantified by Lyapunov exponents, to the degree of the network nodes. A family of network entropies is defined from the network adjacency matrix and related to the statistics of stretching in the fluid, in particular, to the Lyapunov exponent field. Finally, we use a network community detection algorithm, Infomap, to partition the Mediterranean network into coherent regions, i.e., areas internally well mixed, but with little fluid interchange between them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...